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LA~INAR HEAT T~NSFER IN A CIRCULAR TUBE 

UNDER SOLAR RADIATION IN SPACE 

S. SIKKA* and M. IQBALT 

Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada 

(Received 15 May 1969 and in revisedfirm 13 October 1969) 

Abstract-The problem of laminar heat transfer in a circular tube under radiant heat flux boundary 
conditions has been analyzed. Fully developed velocity profile is assumed and the tube is considered 
stationary. A steady radiant energy flux is being incident on one half of the tube circumference while the 
fluid emanates heat through the wall on all sides by radiation to a zero degree temperature environment. 
4 solution by ~~te~ifferen~ procedure has been obtained. The temperature ~st~bution and the Nusseh 

number variation are presented for a wide range of the governing physical parameters. 

NOMENCLATURE Greek symbols 
radius of tube [ft] ; 
incident radiation flux ~~tu~ft’] ; 
thermal conductivity of fluid [Btujhft 

“RI ; 
tube length [ft] ; 
l/a, dimensionless tube length; 
ff uid pressure [lb/ft ‘1; 
heat transfer rate [Btu/hft’] ; 
radial coordinate [ft] ; 
r/u, dimensionless radial coordinate; 
Pr . Re, PCclCt number, dimensionless ; 
@Z&k, Prandtl number, dimensionless; 
r/a, d~ensionle~ radius ; 
R ,/Pe, dimensionless radius in trans- 
formed coordinates ; 
2Ua/v, Reynold’s number, dimension- 
less ; 
temperature at any point /[“RI ; 
average fluid velocity [ft/h] ; 
axial fluid velocity [ft/h] ; 
radial fluid velocity [ft/h] ; 
axial coordinate [ft] ; 
x/u, dimensionless axial coordinate. 

Y, 
6 

coefficient of absorptivity of tube wall, 
dimensionless ; 
affz u/k, a dimensionless parameter ; 
coefficient of emissivity of tube wall, 
dimensionless ; 
T/(k/ao)*, dimensionless temperature ; 
kinematic viscosity of fluid, [ft’,h] ; 
X/Pe, dimensionle~ axial distance ; 
density of fluid [lb,,,/a] ; 
Stefan-Boltzmann constant CO.1714 x 
lo-’ Btu/hftZ”R4] ; 
a(G3a4a/k4)*, radiation-conduction 
parameter, dimensionless ; 
angular coordinate. 

Subscripts 
0, at entrance (X = 0); 
b, fluid bulk ; 

cc critical ; 

f-, radial ; 

W, at wall(r = a); 
x, axial. 

INTBODUCTION 
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HEAT transfer problems relating to laminar flow 
in tubes have been the subject of investigation 
for many years. Various investigators have dealt 
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obtained an approximate solution in terms of 
the Liouvill*Neumann series and also obtained 
an iterative numerical solution. Dussan and 
Irvine [lo] also presented an approximate 
solution for the same problem and verified the 
results experimentally. 
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with various types of boundary conditions. 
Solutions involving prescribed (although vari- 
able) temperature boundary conditions include 
the classical work of Sellars et al. [l]. Other 
solutions in this field are well reviewed by Singh 
[2] who also included the effects of axial heat 
conduction, viscous dissipation and constant 
heat generation. Kuga [3] considered a sinu- 
soidal wall temperature distribution Solutions 
involving prescribed (although variable) heat- 
flux boundary conditions include the work of 
Siegel et al. [4]. Hsu [5] considered a sinusoidal 
wall heat flux distribution and Kuga [6] solved 
the problem for sinusoidal and exponential wall 
heat fluxes. 

However, neither of the investigators [9, lo] 
considered the effect of incident radiation flux 
on the heat-transfer rate of the fluid This 
particular problem has applications in nuclear 
reactors and in spacecraft In spacecraft applica- 
tions the problem may arise either in heat 
rejection systems or in coupling of two satellites 
in space. In the present investigation a tinite- 
difference procedure has been employed to solve 

FIG. 1. Tube nomenclature and geometry 

There is another class of problems in which 
neither the wall temperature nor the wall heat 
flux is prescribed. Instead, the wall heat flux is 
specified as a fimction of the wall temperature. 
This type of problem has only recently received 
some attention This is a more difficult problem 
since the heat transfer equation now involves 
the unknown variable (either temperature or 
heat flux) in an implicit rather than explicit form. 
References 7-10 have treated such type of 
problems Sideman et al. [7] extended Graetz 
solution to include surface resistance to heat 
transfer in laminar flow in circular tubes and 
flat conduits. Stein [8] solved the Graetz 
problem pertaining to the concurrent flow 
double pipe heat exchangers and introduced an 
effectiveness coefficient for heat exchangers. 
Chen [9] solved the problem of radiant cooling 
of a fluid in laminar flow through a tube. He 

the heat-transfer problem for fully developed 
laminar flow of fluid in a tube being heated by a 
uniform incident flux and also undergoing 
radiation cooling from the surface. 

FORMULATION OF THE PROBLEM 

Consider a constant property fluid in laminar 
flow through a circular tube of radius a (Fig 1). 
A steady radiant energy flux of G Btu/hft’ of 
projected area is being incident on one half of 
the tube circumference wh:le the fluid emanates 
heat though the wall on all sides by radiation to a 
O”R environment. At x = 0, the fluid is con- 
sidered to have a fully developed velocity profile 
and a uniform temperature T,. Heat transfer at 
the wall starts at x = 0. It is assumed that the 
tube is not rotating about any axis so that 
secondary flow effects arising from centrifugal 
force may be neglected. 



For the physical situation stated above the 
continuity equation is identically satisfied and 
the solution of the momentum equation is of 
the well known form given below. 

I2 
u,=2u l- - 

[ 01 a 
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The above boundary conditions assume that 
the tube wall is very thin and of low thermal 
conductivity so that there is no temperature 
drop through the tube wall and that the axial 
and circumferential heat conduction in the tube 

(1) wall are negligible compared to the heat transfer 
normal to the tube wall. 

Since there is symmetry about the lines 8 = 0 
and 0 = n, only the upper part of the circle, i.e. 
arc ABC (Fig 1) is considered for boundary 
condition (iii). This symmetry also leads to the 
following two boundary conditions 

where U is the average fluid velocity. 

Energy equation 
Using the solution of the velocity profile from 

equation (1) the energy equation for the system 
in dimensionless form is, 

In the above energy equation the axial heat con- 
duction in the fluid is neglected, since it is known 
that the effect of this term in the energy equation 
is negligible for Pe > 100. The boundary con- 
ditions for the system in dimensionless form are 
as follows : 

B.C. (i) At x = 0, L = Iz,. (3) 

B.C. (ii) At the point R = 0 and 8 = x/2, 

B.C (iii) At the wall we have the following two 
boundary conditions for the two regions of the 
circumference. 

a3, 0 -=. (4) 
Transformation of coordinates 

aR If the energy equation (2) were to be solved in 
its present form for high values of P&let 
numbers there is a danger of losing all high- 
order derivatives and thus getting inaccurate 
results. To avoid this we introduce the following 
transformation : 

and 

where $ = a(G3a40/k4)* is a dimensionless 
radiation-conduction parameter. Convection 
losses from the surface have been ignored, 
although their inclusion will introduce no 
additional mathematical difficultv. .s 

Boundary condition equations (5) and (6) 
change to 

i!i s=,=+e [$ cos 8 - dP)i=,,], 

0 < 6 < n/2 (11) 

B.C. (iv) At fI = 0, 
aA 
ae = 0, 0 < R < 1. (7) 

B.C. (V) At 8 = K, 
an 
a = 0, 0 < R < I. (8) 

METHOD OF SOLUTION 

An exact analytical solution of the system of 
equations (2H8) appears to be impossible. No 
exact series solution for the energy equation (2) 
is known either. A finite-difference solution was 
therefore attempted. 

l? = R-,/Pe. (9) 

Then the energy equation (2) takes the following 
form 

( > 

1 _ E a3, = a21 i an i a3 
Pe ax ZF+X'Z+iF'aei 

(10) 
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(12) 

TheJinitediJfeerence procedure 
The partial differential equation (10) is para- 

bolic in X and R and also in X and 8. Using the 
forward difference approximation for the deriva- 
tive %//ax we obtain an explicit method of 
solution. The central difference approximation 
is used for the remaining derivatives appear- 
ing in the equation (10). The finite-difference 
approximation to the energy equation (10) is 
thus as follows : 

h,j,k+l - li,j,k 

C 1 
- 2Ai,j,k + Ai-l,j,k) 

where i, j, k and a,, b, c are the subscripts and 
step sizes for the R 8 and x directions res- 
pectively. 

On the boundaries, however, we do not try to 
satisfy the differential equation but satisfy the 
boundary conditions only. 

Using the forward-difference approximation 
for the derivative of a function at a point, one 
obtains, in general, for a function C$ at any 
boundary 

$:= ; (20.-I - :&, + “2). (13) 

For example, for the boundary i? = JPe, over 
the range 0 < 8 < n/2 the finite-difference 
relation used to determine function values at 
the boundary is 

A NA+l.j,k=:{22NA.j,k-~IZNA-l,j,k 

+ al+ cos 6 - alE(jZNA+l, j,kJ4) (14) 

where iVA is the number of intervals chosen in 
the R-direction. The above relation is non- 
linear and is solved for &A + 1, j, k by the Newton- 
Raphson method. 

A coarse grid was first used and then the grid 
size made finer until the results remained 
appreciably the same with any further increase 
in grid fineness. 

Determination of Nusselt number 
Once the temperature solution is obtained 

the Nusselt number can be evaluated as follows. 
A semi-local Nusselt number Nu, is defined 

as the Nusselt number at a certain distance x, 
averaged over the circumference 

2a -w 
Nu, = 2ha/k = k. tTwq_ Tb) (15) 

where bar over a quantity denotes its average 
value over a cross-section at a certain value of x. 
q is the fluid bulk temperature for any cross- 
section. Thus, in dimensionless form, 

2Tal"laRIRzl de 
Nu, = II 

~&=rdtI :4jji[l -R’]RdRdB 

Evaluating aA/aR 1 R= 1 by using the boundary 
conditions (5) and (6) and changing to trans- 
formed coordinates the above relation takes the 
following form : 

2($ - e 1 ;14jj&Jpe de} 
Nu, 0 = 

iIIi=,,,dtI -4/Pej’r/Z[l -fi2/Pe]fidffdB 
0 0 0 

(16) 
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Overall energy balance 
Although consistency of results with finer 

grid size is normally used as a criterion of con- 
vergence and accuracy in finite difference solu- 
tions, a heat balance check was also made in this 
study. 

cent It is difficult to say whether Chen’s results 
or the present ones are more accurate since both 
are iterative numerical solutions. The results 
also show that at y = 0.5, for $ < 1.8 the aver- 
age wall temperature decreases with 5 while for 
I,+ > 14 it increases with 5. For $ = 1.8 the 

Equating the difference in enthalpies at two 
sections over a certain length of the tube to the 
net heat transfer from the tube wall, the heat 
balance equation in dimensionless transformed 
coordinates can be written as, 

dtI dx. 

0 0 li= JPe 
(17) 

The percentage error in thermal energy balance 
can be evaluated from equation (17). 

DISCUSSION OF RESULTS 

The results are presented in the form of 
variation of average wall temperature and 
Nusselt number with axial distance. The angular 
wall temperature distribution at any section is 
also studied. 

Average wall temperature 
The average wall temperature variation with 

axial distance is plotted in Fig 2 in terms of the 
dimensionless parameters <, A(= &aTia/k) and 
$[=a(G3a40/k4)*]. In Fig. 2 T,/T, has been 
plotted for y = 05 and different values of $. As 
expected, the average wall temperature is higher 
for a higher value of $ at any 5. For + = 0 the 
problem reduces to one with no incident radi- 
ation and the temperature distribution becomes 
independent of 8. For this case the results are 
compared with those obtained by Chen [9]. The 
results agree fairly well and the maximum 
deviation in results for the range of values over 
which the comparison is made is less than 2 per 
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FIG. 2 Variation of average wall temperature with l(y = 0.5). 
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average wall temperature has a very small 
variation with <. This indicates that for a 
particular value of y there is a critical value of $ 
for which T, does not vary appreciably from the 
initial value T,. Physically this means that the 
amount of energy received and energy emitted 
are adjusted in such a way that the average wall 
temperature has a very small deviation. 

The axial temperature analysis was also 
carried out for other values of y and $ and the 
critical relationship between them is plotted in 
Fig. 3. From this figure for a certain value of y, 
if + is greater than the corresponding critical 
value, it may be concluded that the average wall 
temperature of the fluid at tube exit will exceed 
the inlet temperature. For values of e below the 
critical value the average wall temperature will 
continuously decrease with axial distance. It 
may be stressed, however, that this is only an 
approximate relationship since it is not possible 
to keep T,, constant with l because of the non- 
linearity of the problem, especially for high 
values of +. In choosing the critical values of 9 
an attempt has been made to keep the net 
variation of ??,,/T, from (1) a minimum over the 
tube length. It has to be emphasized that to some 
extent the critical values are also dependent 
upon the tube length L. 

Angular wall temperature distribution 
The angular wall temperature variation was 

also studied. It was found that for increasing 

2.4- 

I? 
\ 
k 

I.& 

FIG. 4. Angular wall temperature distribution (I) = 25. y = 51 

values of + and fixed values of y and t, the wall 
temperature in the neighbourhood of 6 = 0 
increases rapidly while the increase in the wall 
temperature in the neighbourhood of 0 = 180 
is very slow. 

Figure 4 gives the plots of angular variation 
of wall temperature for different values of < and 
a fixed value of Ic, and 7. The wall temperature 
near 8 = 0 increases with < but near 8 = n it 
decreases with <. Near 8 = z the fluid does not 
receive any direct incident flux (although it 
receives heat by convection from the fluid facing 
the incident flux) but it loses heat according to 
the fourth power law of radiation. The wall 
temperature, therefore, decreases with 5. Near 
8 = 0 the effect of incident flux causes a slow 

increase of the wall temperature for this case 
where Ic, < $,,. 

Nusselt number 
The variation of Nusselt number with 

is presented in Figs. 5-7. 

FIG. 5. Variation of Nusselt number with r for y = 0.5 

(J, < IL,,). 

For @ = 0, which corresponds to the case of 
no incident radiation flux, it was found that Nu 
decreases with increasing values of 5 and y. 
A comparison was also made with Chen’s [9] 
values and it was noted that at values of < < 0.01 
the two solutions diverge. This partial dis- 
agreement may be due to the difference in 
approach of the two studies, Fig 5. 
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With the inclusion of incident radiation flux, 
however, the situation is not as simple. The 
Nusselt number values will depend upon whether 
$ is greater or lower than the critical value 
and its closeness to this critical value. 

FIG. 6. Variation of Nusselt number with ( for y = 03 
c* > *cJ 

For y = 05, Fig 5 illustrates the variation for 
two values of t,k In both cases $ < $,, Nusselt 
number decreases with c for values of $ other 
than zero also, when JI < $, This is explained 
as follows : The wall temperature is greater than 
the inside temperature for the portion of the 
tube facing the incident radiation but, for the 
remaining portion of the tube, the wall tempera- 
ture is less than the inside temperature However, 
it has been noted that the integrated value of 
aT/~overthecircumference,i.e.S~aT/~rl,=.de, 
is negative Also Tb is greater than T, and there- 
fore, Nu remains positive. With increasing values 
of r, the net heat-transfer rate decreases in 
magnitude while (Tb - T,) increases so that 
Nu decreases. 

Also, for tj < J/,,. increase of $ reduces Nu 
at any section because it decreases the magnitude 
of the net heat transfer rate from the fluid to the 
surroundings. 

Figure 6 shows a similar plot for three other 
values of $. In this case $ > \I_ for each value 
of I,+. From the detailed calculations it has been 
noted that at any section, the wall temperature 
is greater than the inside temnerature for the 

portion of the tube facing the incident radiant 
flux but, for the remaining portion the wall 
temperature is less than the inside temperature. 
However, the variation is in such a manner as to 

make 7 ~T/c%],=~ d0 positive in this case. Also 

‘ii, > t so that Nu remains positive. For low 
values of 5, Nu is lower for a higher value of II/. 
With increasing values of r, NU is substantially 
reduced in very short distances The decrease 
in Nu is less for higher values of I++ and Nu even 
increases towards the end for $ = 25 and $ = 120. 
(The analysis has been carried out for values of 
c up to 0.1 only.) This particular behaviour is due 
to the fact that although the heat transfer rate 
decreases with I& the difference (T, - T,) also 
decreases with <. Ultimately the Nusselt number 
variation depends upon the rates of decrease 
of these two quantities. 

Figure 7 illustrates the variation of Nusselt 
number with < for a very particular situation 
when $ N Ic/, at a given value of y. This figure 
illustrates that Nu decreases with < over most 

I” - 10 - 10-I 

FIG. 7. Variation of Nusselt number with r for y = 0.5 
(* = G”). 

of the region but fluctuates wildly in the 
neighbourhood of [ = 002 The Nusselt number 
even goes to negative values To offer an ex- 
planation for this behaviour we have to analyze 
the variation of quantities such as net heat- 
transfer rate, average wall temperature and bulk 



982 S. SIKKA and M. IQBAL 

temperature for this case. This is done by studying 
the variation of the numerator and the two terms 
of the denominator of equation (16). It was 
noted that for the indicated values of y and rc/ 
and for the range of 5 values covered, the heat 
flux decreases from +0*29 to -0.075. Initially, 
for values of 5 less than approximately 0.02, the 
net heat-transfer rate is positive, indicating 
net heat transfer into the fluid Also, in this 
range of [, T, is greater than Tb, so that Nu 
is positive. With increasing values of I& the 
difference in the values of rii, and T diminishes 
and at 5 = 0.021, ‘ii, = Tb For 5 > 0.021, ‘ii, is 
smaller than T,. Therefore, in the region 
< = 0*0204023, because of the small differences 
in T, and Tb, the Nusselt number fluctuates 
between very large positive and negative values. 
For r > 0.0235 the heat transfer rate becomes 
negative indicating that net heat transfer now 
occurs from the fluid to the surroundings. 
Also in this range of values of 5, T, > G so that 
Nu is ultimately positive. 

However, it may be stressed here that the wild 
fluctuation in Nu is only over a very small 
region of the tube length and if a mean Nusselt 
number for the whole length of the tube were to 
be evaluated, it would not be much affected. 

Overall energy balance 
The percentage error in overall energy balance 

as given by equation (17) was calculated and 
found to be less than 3 per cent for most values 
of y and $. 
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TRANSPORT DE CHALEUR LAMINAIRE DANS UN TUBE CIRCULAIRE SOUS LE 
RAYONNEMENT SOLAIRE DANS L’ESPACE 

R&sum&-IX probleme du transport de cbaleur laminaire dans un tube circulaire a &ti analyd sous des 
conditions aux limitea de flux de chaleur par rayonnement. On a suppod que le proiil de vitesse. &ait 
entibrement dtvelop@ et que le tube 6tait stationnaire. Un flux d’&nergie rayonnante stationnaire tombe 
sur une moiti4. de la circonbrence du tube tandis que le fluide d&gas de la chaleur g travers la paroi de 
tous les c&t& par rayonnement vers un environnement B une temp&rature. de z&o degrt. Une solution par 
un processus de diffbrences finies a tt6 obtenue. La distribution de tempCrature et la variation du nombre 

de Nusselt sont prCsentCes pour une large gamme des paramktres physiques dkterminants. 
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LAMINARER WARMEUBERGANG IN EINEM ROHR VON KREISQUERSCHNIYT 
BE1 SONNENEINSTRAHLUNG IM WELTRAUM 

Zusammenfassung-Das Problem des laminaren Warmeiibergangs in einem Rohr von Kreisquerschnitt 
unter dem Einfluss der Temperaturstrahlung wurde analysiert. 

Voll ausgebildetes Geschwindigkeitsprofil wurde angenommen und das Rohr war als ruhend betrachtet. 
Ein stlndiger Strahlungsstrom trith auf eine Hllfte des Rohrumfangs, wlhrend die Fhissigkeit Wlrme 
durch die Wande nach allen Richtungen durch Strahlung an eine Umgebung von der Temperatur Null 
Grad abgibt. Fine Losung durch endhche Differenzen wurde erhalten. Die Temperaturverteilung und die 
Nusselt-Zahl-Anderung sind fur einen grossen Bereich der beeinflussenden physikahschen Parametern 

angegeben. 

JIAMHHAPHMH HEPEHOC TEIIJIA B HPYI’JIOH TPYEE HOA AEHCTBHEM 
COJIHE4HOH PAABAHHH B KOCMB=IECHOM HPOCTPAHCTBE 

AHHOTRqaJI-AHann3vpOBa~aCb sanasa XamHapHoro nepewoca Tema B ~pymoti Tpy6e 

npK rpaHH'4HbIX yCJlOBElRX JIyWtCTOrO TenJlOBOrO nOTOKa. npeAnOJIaraJIOCb, 'IT0 npO@UIb 

CKOpOCTHfiBJlReTCXnOJlHOCTbIOpa3BHTbIM,a Tpy6a CTa~l4OHapHOti.CTa@iOHapHbltiJIyWCTbIti 
nOTOK 3Heprllll naRaJI Ha OJJHy nOJlOBHHy OKpymHOCTI4 Tpy6bI, B TO BpeMR KaK H(II~HOCTb 

ll3JIyqaJIa TenJlO Yepe3 CTeHKy Tpy6bI BO BCe CTOpOHbI B npOCTpaHCTB0 C HyJIeBOt TeMne- 

paTypoP. Penreme nonyqeH0 MeToRoM KoHewbIx pa3KocTeii. PacnpegeneHne TemepaTypbI 

R kr3rtieHeHHe KpHTepm HyCCenbTa npeRcraBneHn mm mipo~oro ,qHanaaoHa OCHOBHHX 

@i3mecmx napaMeTpoB. 


