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LAMINAR HEAT TRANSFER IN A CIRCULAR TUBE
UNDER SOLAR RADIATION IN SPACE
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Abstract—The problem of laminar heat transfer in a circular tube under radiant heat flux boundary

conditions has been analyzed. Fully developed velocity profile is assumed and the tube is considered

stationary. A steady radiant energy flux is being incident on one half of the tube circumference while the

fluid emanates heat through the wall on all sides by radiation to a zero degree temperature environment.

A solution by finite-difference procedure has been obtained. The temperature distribution and the Nusselt
number variation are presented for a wide range of the governing physical parameters.

NOMENCLATURE

radius of tube [ft];

incident radiation flux [Btu/hft?];
thermal conductivity of fluid [Btu/hft
‘R];

tube length [ft];

I/a, dimensionless tube length;

fluid pressure [1b/ft*];

heat transfer rate [Btu/hft?];

radial coordinate [ft];

r/a, dimensionless radial coordinate;
Pr - Re, Péclét number, dimensionless ;
#C /k, Prandtl number, dimensionless;
r/a, dimensionless radius;

R ,/Pe, dimensionless radius in trans-
formed coordinates;

2Ua/v, Reynold’s number, dimension-
less;

temperature at any point [°R};

average fluid velocity [ft/h];

axial fluid velocity [ft/h];

radial fluid velocity [ft/h];

axial coordinate [ft];

x/a, dimensionless axial coordinate.

* Graduate Student.
+ Associate Professor.

Greek symbols

coefficient of absorptivity of tube wall,
dimensionless;

y, & Tg a/k, a dimensionless parameter;

g,  coefficient of emissivity of tube wall,
dimensionless;

4 T/(k/ac)?, dimensionless temperature ;

v,  kinematic viscosity of fluid, [ft?/h];

¢,  X/Pe, dimensionless axial distance;

p,  density of fluid [Ib,/f*];

o, Stefan-Boltzmann constant [0-1714 x
1078 Btu/hft>°R*];

Y, oGa*o/k*)?,  radiation—conduction
parameter, dimensionless;

8, angular coordinate.

Subscripts

0, atentrance (x = 0);

b, fluid bulk;

cr, critical;

r, radial;

w, atwall(r= a);

x,  axial

INTRODUCTION

HEAT transfer problems relating to laminar flow
in tubes have been the subject of investigation
for many years. Various investigators have dealt
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with various types of boundary conditions.
Solutions involving prescribed (although vari-
able) temperature boundary conditions include
the classical work of Sellars et al. [1]. Other
solutions in this field are well reviewed by Singh
[2] who also included the effects of axial heat
conduction, viscous dissipation and constant
heat generation. Kuga [3] considered a sinu-
soidal wall temperature distribution. Solutions
involving prescribed (although variable) heat-
flux boundary conditions include the work of
Siegel et al. [4]. Hsu [5] considered a sinusoidal
wall heat flux distribution and Kuga [6] solved
the problem for sinusoidal and exponential wall
heat fluxes.

obtained an approximate solution in terms of
the Liouville-Neumann series and also obtained
an iterative numerical solution. Dussan and
Irvine [10] also presented an approximate
solution for the same problem and verified the
results experimentally.

However, neither of the investigators [9, 10]
considered the effect of incident radiation flux
on the heat-transfer rate of the fluid. This
particular problem has applications in nuclear
reactors and in spacecraft. In spacecraft applica-
tions the problem may arise either in heat
rejection systems or in coupling of two satellites
in space. In the present investigation a finite-
difference procedure has been employed to solve

FiG. 1. Tube nomenclature and geometry.

There is another class of problems in which
neither the wall temperature nor the wall heat
flux is prescribed. Instead, the wall heat flux is
specified as a function of the wall temperature.
This type of problem has only recently received
some attention. This is a more difficult problem
since the heat transfer equation now involves
the unknown variable (either temperature or
heat flux) in an implicit rather than explicit form.
References 7-10 have treated such type of
problems. Sideman et al. [7] extended Graetz
solution to include surface resistance to heat
transfer in laminar flow in circular tubes and
flat conduits. Stein [8] solved the Graetz
problem pertaining to the concurrent flow
double pipe heat exchangers and introduced an
effectiveness coefficient for heat exchangers.
Chen [9] solved the problem of radiant cooling
of a fluid in laminar flow through a tube. He

the heat-transfer problem for fully developed
laminar flow of fluid in a tube being heated by a
uniform incident flux and also undergoing
radiation cooling from the surface.

FORMULATION OF THE PROBLEM

Consider a constant property fluid in laminar
flow through a circular tube of radius a (Fig 1).
A steady radiant energy flux of G Btu/hft? of
projected area is being incident on one half of
the tube circumference while the fluid emanates
heat though the wall on all sides by radiation to a
0°R environment. At x = 0, the fluid is con-
sidered to have a fully developed velocity profile
and a uniform temperature T, Heat transfer at
the wall starts at x = 0. It is assumed that the
tube is not rotating about any axis so that
secondary flow effects arising from centrifugal
force may be neglected.
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For the physical situation stated above the
continuity equation is identically satisfied and
the solution of the momentum equation is of
the well known form given below.

r 2
worfi-(f] o
a
where U is the average fluid velocity.

Energy equation

Using the solution of the velocity profile from
equation (1) the energy equation for the system
in dimensionless form is,

a— ) L621+1.61+1'621
8x Pe\OR? " R 0R R? 90%/
@
In the above energy equation the axial heat con-

duction in the fluid is neglected, since it is known
that the effect of this term in the energy equation
is negligible for Pe > 100. The boundary con-
ditions for the system in dimensionless form are
as follows:

BC@HAtx=0, A=14, 3
B.C. (ii) At the point R = 0 and 6 = 7/2,
04

B.C. (iii) At the wall we have the following two
boundary conditions for the two regions of the
circumference.

aA
— =ycosd — i), 0<0
OR|g-1
5
and
04 " T
a—RR=1_ '—8('1 )R=b §<0<n7 (6)

where ¥ = o(G3a*o/k*)* is a dimensionless
radiation—conduction parameter. Convection
losses from the surface have been ignored,
although their inclusion will introduce no
additional mathematical difficulty.
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The above boundary conditions assume that
the tube wall is very thin and of low thermal
conductivity so that there is no temperature
drop through the tube wall and that the axial
and circumferential heat conduction in the tube
wall are negligible compared to the heat transfer
normal to the tube wall.

Since there is symmetry about the lines 8 = 0
and 6 = =, only the upper part of the circle, i.e.
arc ABC (Fig. 1) is considered for boundary
condition (iii). This symmetry also leads to the
following two boundary conditions.

B.C. (iv) At 0 = 0, Zg 0, OSR<1 (V)
oA
BC (WAto=m = =0 0<R<1 (§

METHOD OF SOLUTION
An exact analytical solution of the system of
equations (2)}«8) appears to be impossible. No
exact series solution for the energy equation (2)
is known either. A finite-difference solution was
therefore attempted.

Transformation of coordinates

If the energy equation (2) were to be solved in
its present form, for high values of Péclét
numbers there is a danger of losing all high-
order derivatives and thus getting inaccurate
results. To avoid this we introduce the following
transformation:

R=R-/Pe. ©

Then the energy equation (2) takes the following
form

é_g)a_a_a%uya/uyw
PeJox oR2" R oR ™ R 96
(10)

Boundary condition equations (5) and (6)
change to

61

[¥ cos 0 — e(A*)z - sre);

0<0<m/2

JP

R= JPe

(D
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02 £ 4 i
- . A <
aR R=yPe \/Pe A =yre 2

T he finite-difference procedure

The partial differential equation (10) is para-
bolic in X and R and also in X and 6. Using the
forward difference approximation for the deriva-
tive 04/0x we obtain an explicit method of
solution. The central difference approximation
is used for the remaining derivatives appear-
ing in the equation (10). The finite-difference
approximation to the energy equation (10) is
thus as follows:

L B[ — Ak
Pe c

1 {1 !
= oot Gt = P i)
1

1 1

+ R '2—‘1—1(}~i+1,j,k — Aio1,j8)

1 1
+ ﬁ—z‘?(ii,jn,k =24k + }”U‘l”‘)}

where i, j, k and a,, b, ¢ are the subscripts and
step sizes for the R, § and x directions res-
pectively.

On the boundaries, however, we do not try to
satisfy the differential equation but satisfy the
boundary conditions only.

Using the forward-difference approximation
for the derivative of a function at a point, one
obtains, in general, for a function ¢ at any
boundary

2 0
6= 220, 10,204}
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For example, for the boundary R = /Pe, over
the range 0 < 6 < m/2 the finite-difference
relation used to determine function values at
the boundary is

2 1
Anasrk =5 {2An4 5k — 2ANA-1, ),k

+ a;y cos O — als(lNA+1,j,k)4} (14)

where NA is the number of intervals chosen in
the R-direction. The above relation is non-
linear and is solved for Ay 4 1, ;,« by the Newton—
Raphson method.

A coarse grid was first used and then the grid
size made finer until the results remained
appreciably the same with any further increase
in grid fineness.

Determination of Nusselt number
Once the temperature solution is obtained
the Nusselt number can be evaluated as follows.
A semi-local Nusselt number Nu, is defined
as the Nusselt number at a certain distance x,
averaged over the circumference

2a g,

k (Tw - Tl;),
where bar over a quantity denotes its average
value over a cross-section at a certain value of x.

T, is the fluid bulk temperature for any cross-
section. Thus, in dimensionless form,

2] 04/0R|x-, 6
0

Nu, = 2hafk = (15)

Nu,

=z nl
{A|r:1d0 —4[{A[1 — R]RdRAY
0 00

Evaluating 04/0R | g, by using the boundary
conditions (5) and (6) and changing to trans-
formed coordinates the above relation takes the
following form:

2y — e(}:m:mde}

Nu, =

fA|a=ypd0 — 4/Pe |
0 0

A[1 — R2/Pe] RdR do (16)

0
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Overall energy balance

Although consistency of results with finer
grid size is normally used as a criterion of con-
vergence and accuracy in finite difference solu-
tions, a heat balance check was also made in this
study.

Equating the difference in enthalpies at two
sections over a certain length of the tube to the
net heat transfer from the tube wall, the heat
balance equation in dimensionless transformed
coordinates can be written as,

JPe ®
2

f j/l ﬁ(l_§>dedﬁ

Pe

0 0 X=L

Ln
= yL + "}‘ZP" - e”r d0dx.

00 R= yPe

17

The percentage error in thermal energy balance
can be evaluated from equation (17).

DISCUSSION OF RESULTS

The results are presented in the form of
variation of average wall temperature and
Nusselt number with axial distance. The angular
wall temperature distribution at any section is
also studied.

Average wall temperature

The average wall temperature variation with
axial distance is plotted in Fig 2 in terms of the
dimensionless parameters £, A(= eoT3a/k) and
Y[=a(G*a%s/k**]. In Fig. 2 T,/T, has been
plotted for y = 0-5 and different values of . As
expected, the average wall temperature is higher
for a higher value of ¥ at any & For ¢ = 0 the
problem reduces to one with no incident radi-
ation and the temperature distribution becomes
independent of 6. For this case the results are
compared with those obtained by Chen [9]. The
results agree fairly well and the maximum
deviation in results for the range of values over
which the comparison is made is less than 2 per
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cent. It is difficult to say whether Chen’s results
or the present ones are more accurate since both
are iterative numerical solutions. The results
also show that at y = 0-5, for y < 1-8 the aver-
age wall temperature decreases with ¢ while for
Y > 1-8 it increases with & For ¢ = 1-8 the

¥=120
2:0
y=0-5 ———~Chen
{y=ec Iafk)
16 25
o
14
AN 10
O
1-2) 5
. I8
0-5
08
L L L Il o
0 ooz 0-04 006 008 010

Fi1G. 2 Variation of average wall temperature with £(y = 0-5).

1000

100

FiG. 3. Critical relationship between y and .
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average wall temperature has a very small
variation with ¢ This indicates that for a
particular value of y there is a critical value of
for which T,, does not vary appreciably from the
initial value T, Physically this means that the
amount of energy received and energy emitted
arc adjusted in such a way that the average wall
temperature has a very small deviation.

The axial temperature analysis was also
carried out for other values of y and y and the
critical relationship between them is plotted in
Fig. 3. From this figure for a certain value of y,
if y is greater than the corresponding critical
value, it may be concluded that the average wall
temperature of the fluid at tube exit will exceed
the inlet temperature. For values of i below the
critical value the average wall temperature will
continuously decrease with axial distance. It
may be stressed, however, that this is only an
approximate relationship since it is not possible
to keep T, constant with ¢ because of the non-
linearity of the problem, especially for high
values of . In choosing the critical values of
an attempt has been made to keep the net
variation of T,,/T; from (1) a minimum over the
tube length. It has to be emphasized that to some
extent the critical values are also dependent
upon the tube length L.

Angular wall temperature distribution
The angular wall temperature variation was
also studied. It was found that for increasing

3-0
¥ =25
y=5
2-4F
1o
3 €107
181
1072
10!
-2 | 1 — A
0° 60 120° 180°

]
F1G. 4. Angular wall temperature distribution (y = 25,7y = 5.

S. SIKKA and M. IQBAL

values of ¥ and fixed values of y and ¢, the wall
temperature in the neighbourhood of § =0
increases rapidly while the increase in the wall
temperature in the neighbourhood of 8 = 180°
is very slow.

Figure 4 gives the plots of angular variation
of wall temperature for different values of ¢ and
a fixed value of y and y. The wall temperature
near f = 0 increases with ¢ but near 8 = 7 it
decreases with & Near 0 = n the fluid does not
receive any direct incident flux (although it
receives heat by convection from the fluid facing
the incident flux) but it loses heat according to
the fourth power law of radiation. The wall
temperature, therefore, decreases with ¢. Near
0 = 0 the effect of incident flux causes a slow
increase of the wall temperature for this case
where < ..

Nusselt number
The variation of Nusselt number with ¢
is presented in Figs. 5-7.

y=0:5

o Chen (y=0)

L ] 1 | D N S 1 L A Ll
1073 0 o

FiG. 5. Variation of Nusselt number with ¢ for y = 0-5

W <y

For y = 0, which corresponds to the case of
no incident radiation flux, it was found that Nu
decreases with increasing values of ¢ and 7.
A comparison was also made with Chen’s [9]
values and it was noted that at values of ¢ < 0-01
the two solutions diverge. This partial dis-
agreement may be due to the difference in
approach of the two studies, Fig. 5.



HEAT TRANSFER IN A CIRCULAR TUBE

With the inclusion of incident radiation flux,
however, the situation is not as simple. The
Nusselt number values will depend upon whether
Y is greater or lower than the critical value
and its closeness to this critical value.

16

P y =05

1 | I T | 1 1 1 I T |
107? 102 o

FiG. 6. Variation of Nusselt number with & for y = 05
W > y,)

For y = 05, Fig. S illustrates the variation for
two values of . In both cases Y < ¥, Nusselt
number decreases with & for values of ¥ other
than zero also, when ¥ < . This is explained
as follows: The wall temperature is greater than
the inside temperature for the portion of the
tube facing the incident radiation but, for the
remaining portion of the tube, the wall tempera-
ture is less than the inside temperature. However,
it has been noted that the integrated value of
OT/or over the circumference, i.e.[3* T/dr|, -, d0,
is negative. Also T; is greater than T, and, there-
fore, Nu remains positive. With increasing values
of & the net heat-transfer rate decreases in
magnitude while (T, — T,) increases so that
Nu decreases.

Also, for ¥ < ¢.,. increase of ¥ reduces Nu
at any section because it decreases the magnitude
of the net heat transfer rate from the fluid to the
surroundings.

Figure 6 shows a similar plot for three other
values of ¢. In this case ¥ > ¥, for each value
of . From the detailed calculations it has been
noted that at any section, the wall temperature
is greater than the inside temperature for the
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portion of the tube facing the incident radiant
flux but, for the remaining portion the wall
temperature is less than the inside temperature.
However, the variation is in such a manner as to

2x
make | 0T/dr|,-,d0 positive in this case. Also
(1]

T, > T, so that Nu remains positive. For low
values of £, Nu is lower for a higher value of .
With increasing values of £, Nu is substantially
reduced in very short distances. The decrease
in Nu is less for higher values of y and Nu even
increases towards the end fory = 25and y = 120.
(The analysis has been carried out for values of
& up to 0-1 only.) This particular behaviour is due
to the fact that although the heat transfer rate
decreases with ¢, the difference (T, — T;) also
decreases with & Ultimately the Nusselt number
variation depends upon the rates of decrease
of these two quantities.

Figure 7 illustrates the variation of Nusselt
number with ¢ for a very particular situation
when ¥ ~ y, at a given value of y. This figure
illustrates that Nu decreases with ¢ over most

401

€
W
@ o

Nu,

o F\

-0 1 F I T Y A 1 § I TR N N I Y

1073 1072 107

FiG. 7. Variation of Nusselt number with ¢ for y = 0-5
W = o)

of the region but fluctuates wildly in the
neighbourhood of ¢ = 0-02. The Nusselt number
even goes to negative values. To offer an ex-
planation for this behaviour we have to analyze
the variation of quantities such as net heat-
transfer rate, average wall temperature and bulk
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temperature for this case. This is done by studying
the variation of the numerator and the two terms
of the denominator of equation (16). It was
noted that for the indicated values of y and y
and for the range of & values covered, the heat
flux decreases from +029 to —0-075. Initially,
for values of ¢ less than approximately 0-02, the
net heat-transfer rate is positive, indicating
net heat transfer into the fluid. Also, in this
range of ¢ T, is greater than T, so that Nu
is positive. With increasing values of &, the
difference in the values of T,, and T, diminishes
and at £ = 0021, T,, = T,, For ¢ > 0021, T, is
smaller than 7,. Therefore, in the region
& = 0-020-0-023, because of the small differences
in T, and T,, the Nusselt number fluctuates
between very large positive and negative values.
For ¢ > 00235 the heat transfer rate becomes
negative indicating that net heat transfer now
occurs from the fluid to the surroundings.
Also in this range of values of & T,, > T, so that
Nu is ultimately positive.

However, it may be stressed here that the wild
fluctuation in Nu is only over a very small
region of the tube length and if a mean Nusselt
number for the whole length of the tube were to
be evaluated, it would not be much affected.

Overall energy balance

The percentage error in overall energy balance
as given by equation (17) was calculated and
found to be less than 3 per cent for most values
of y and .
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TRANSPORT DE CHALEUR LAMINAIRE DANS UN TUBE CIRCULAIRE SOUS LE
RAYONNEMENT SOLAIRE DANS L’ESPACE

Résumé—Le probléme du transport de chaleur laminaire dans un tube circulaire a été analysé sous des

conditions aux limites de flux de chaleur par rayonnement. On a supposé que le profil de vitesse était

enti¢rement développé et que le tube était stationnaire. Un flux d’énergie rayonnante stationnaire tombe

sur une moitié de la circonférence du tube tandis que le fluide dégage de la chaleur A travers la paroi de

tous les c6tés par rayonnement vers un environnement 4 une température de zéro degré. Une solution par

un processus de différences finies a été obtenue. La distribution de température et la variation du nombre
de Nusselt sont présentées pour une large gamme des paramétres physiques déterminants.
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LAMINARER WARMEUBERGANG IN EINEM ROHR VON KREISQUERSCHNIYT
BEI SONNENEINSTRAHLUNG IM WELTRAUM

Zusammenfassung—Das Problem des laminaren Wirmeiibergangs in einem Rohr von Kreisquerschnitt
unter dem Einfluss der Temperaturstrahlung wurde analysiert.

Voll ausgebildetes Geschwindigkeitsprofil wurde angenommen und das Rohr war als ruhend betrachtet.
Ein stindiger Strahlungsstrom trifft auf eine Hilfte des Rohrumfangs, wihrend die Fliissigkeit Wérme
durch die Winde nach allen Richtungen durch Strahlung an eine Umgebung von der Temperatur Null
Grad abgibt. Eine Losung durch endliche Differenzen wurde erhalten. Die Temperaturverteilung und die
Nusselt-Zahl-Anderung sind fiir einen grossen Bereich der becinflussenden physikalischen Parametern

angegeben.

JAMUHAPHBIU IIEPEHOC TEIUIA B KPYTJION TPYBE NOJ OENCTBUEM
COJTHEYHON PAQVAIIMU B KOCMUYECKOM TPOCTPAHCTBE

AHHOTAMA—AHANM3MPOBAJAch 3a4a4a JAMHHAPHOTO IlepeHOCa Telia B KpPYrIoil TpyGe
TIpM TPAHMYHHEIX YCJIOBHAX JYYHCTOr0 TeIuIOBOro moToka. [Ipepmosaranock, yro mpoduin
CKOPOCTH AABJIAETCA MOJHOCTBI0 PasBUTHIM, a TpyOa cranuoHapHol. CTanuMoOHapHEIN JTyYnCTHIA
MOTOK 9HEPruH Majak Ha OfHY TOJIOBMHY OKDYMKHOCTM TpyObl, B TO BPEMA KaK KHUIKOCTH
M3y4ajla Temo depe3 CTEHKY TpyOH BO BCe CTODOHB B IPOCTPAHCTBO C HYJeBOR Temme-
parypoii. Pemenne moxy4eHo MeTOZOM KOHEUHEIX pasHocreli. Pacnpenenenue remmeparyput
un uameHeHne kpurepua HycceabTa npegcraBieHBl [JIA LMIMPOKOTO JMAlla30HA OCHOBHHIX
PU3NYECKUX ITapaMeTpPOB.
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